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1. INTRODUCTION

Connected multi-body dynamics problems of all kinds have been

encountered since the invention of the wheel and its application to a moving

platform. The precise formulation of the equations of motion for more than two

connected bodies brought little attention, except for the compound pendulum,

until the space age, probably because techniques and means for the solution to

the equations for two bodies with more than one or two degrees of freedom were

generally unavailable or too unwieldy and impractical to use. In the last two

decades, tremendous advances have been made in both the formulation methods

and computer solution to multi-body/multi-degree of freedom problems. Today,

it is not uncommon to obtain computer solutions for multi-body systems

including flexible modes with more than twenty degrees of freedom or more than

* fifty state variables. Even so, such computer programs evolve to usefulness

only after the problem equations formulation, computer coding of the

equations, and debugging of the problem. The general effectiveness of the

resulting multi-body dynamics and control simulation is usually assessed in

terms of the formulation and coding and debugging effort, the computer run

time, the ease of an analyst to become familiar with the program after it has

been developed, and the ease of modifying the program to reflect changes and

additions to the design of the system. With these ideas in mind, the multi-

body dynamics formulation for a spaceborne gimbal system was undertaken anew.

The approach initially favored was one wherein the "primitive"' 1 )

Newtonian/Eulerian equations for translational and rotational motion are

retained throughout. This would have required retention of all 6 degrees of

freedom for each body and the necessity of integrating more state variable

equations than are actually needed. Because computer run time is roughly

proportional to the number of state variables and to the highest frequency

* We use Jerkovsky's definition: By "primitive" equations and variables, we
mean equations and variables that refer to each body as a separate and dis-
tinct body without regard to how it fits into the multi-body configuration.

5
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mode in the system, we can reduce run time considerably by reducing the

degrees of freedom of each body to 3 by not solving the translational

equations of motion by integration. However, holonomic constraint equations,

which are essentially algebraic, that constrain the gimbal geometry to con-

serve translational momentum of the gimbal system, have been introduced in

this paper which supplant the translational differential equations of

motion. This is basically the approach initially taken by Russell (2 ) in his

so-called "primed momentum" formulation method. We are then left with 3

rotational degrees of freedom for each body which are permitted for each axis

of a Cartesian coordinate frame associated with that body. The Cartesian

reference frames are retained from the beginning in order to permit insight,

visibility, and a feel for what is dynamically happening throughout the

formulation and simulation. Generalized coordinates formulations such as are

used in Lagrange, D'Alembert, Hamilton Boltzmann-Hamel, Gibbs, and Kane(3 )

I
derivations of the equations of motion are avoided on purpose as is the

transformation operator formalism of Jerkovsky. ( 1'4 ) This is because a)

insight seems to get lost, and b) either hand reduction by matrix inversion of

the constraint equations to reduce computer solution time is needed, or this

problem is left to the computer whereby run time suffers due to matrix

inversions that are performed in each integration step. These other

approaches admittedly have the potential of shorter computer run times than

are obtained using a momentum formulation because they reduce the number of

degrees of freedom for each body to an absolute minimum, e.g., the equations

for a single bearing axis gimballed body only needs one degree of "free"

rotational freedom, the other two degrees of relative freedom being "hard"

constrained or completely nulled via constraint equations.

In the alternative approach taken here, relative motion about the

constrained motion aias of the Cartesian frames is permitted, but only

slightly. The small to infinitesimal relative motions allowed require

additional solutions of angular motions transverse to the bearing axis but we

eliminate the need for hand or computer solution of "hard" constraint

equations which generally involve matrix inversions. An advantage obtained is

that the true transverse axis dynamics can be revealed and their effect on

6
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system stability evaluated. However, because gimbal bearing transverse axis

stiffnesses can be large, the highest associated eigenvalue frequency can be

considerably higher than the highest control loop component bandwidth thereby

requiring shortening of the integration step size merely to get the constraint

satisfied. This shortcoming can be alleviated after one ascertains that high

frequency mode instability is not a problem by artificially reducing

transverse axis stiffness or increasing transverse axis viscous friction in a

way that lowers the transverse axis characteristic frequency to the vicinity

of the control loop bandwidths.

The multi-body equations presented in this paper are derived for bodies

in an open chain tree (5 ) configuration typical of a spacecraft with two or

more gimballed elements. The rotational equations of motion of one of the

bodies are general for open chain tree configurations as are the translational

momentum constraint equations. The equations and matrix-scalar block diagrams

are given for an example 4-body system comprised of a 3 axis controlled

spacecraft, a single axis controlled solar array, and a 2-axis gimbal con-

trolled payload with a gimbal yoke that has mass and inertia.

. 7/S
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2. GIMBALLED BODY MOMENTUM

* Referring to Figure 1, we imagine the gimballed body with a mass element

dui at R relative to an inertial frame I to be gimballed about one of the axes

of a frame G whose basis vectors are parallel to those of frame g at the c.m.

of the body. Frame g is displaced an amount ri from the frame G and both

frames are fixed in the body and therefore rotate with the body at its

inertial angular rate u. Then the moment of momentum of this body about the

origin of the frame g, or in other words, about its center of mass is( 5- 8 )

H - f r x R dm (1)g

=f x(Ri +  x r)dm (2)
a

H- x( x r)dm - RI x f dm (3)

The first term on the right side of (3) is g * w where 9 is the

inertia dyadic or inertia matrix with respect to the frame g, and the integral

in the second term is equal to the gimballed body mass M times the radius

vector from the frame g to the c.m. which is the null vector and hence is

zero. Thus (3) is written as

- * w (4)g g g

*

* 1 9
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3. EQUATIONS OF MOTION

The equation of translational motion for the gimballed body of Figure 1

is

"> ,. ..

MIR Fi - F (5)

In the figure, we have assumed two gimbal points on the ith body. The

subscript I identifies the gimbal frame associated with that body and the

interbody force and torque at that point, whereas the subscript (i - 1)

identifies the adjacent connected body and its associated gimbal that it

shares with the ith body and its interbody force and torque. The negative of

the interbody force and torque acting on the (i - 1) body are felt by reaction

on the ith body.

The equation of rotational motion about the point g, or center of mass

of the body is
( 5-8 )

TT - rQ FQ = H (6)

where

T f Ti - T (i-1) (7)

and

rQ XF (r I F)- r Ai F J (8)

where the last expression has been introduced for convenience in simplifying

the form of the resulting equations. In the usual approach we would substi-

tute appropriate combinations of (5) into (8) which process is lengthy and

replete with terms. To show the general idea of the equation development, we

further simplify by introducing

II
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!4QRQ FQ (9)

so that

r x FQ - r. x QRQ (10)

Following the concept introduced by Russell( 2) we write (10) as

+ + d + + +

r.X flt- r Fr xMR rx MRXFQ Q Q - (11)

Employing (11) in (6) we have

+ +" d +
TT H + -(Q xMQQ) - Q x MQQ (12)

The vector derivatives indicated in (12) are relative to an inertial
reference. In order to solve a vector differential equation computationally,

It needs to be scalarized in a convenient frame of reference (see Appendix).
We wish to use the frame C in our computations and so we find the components

of the inertial vector derivatives of H and r Q which have their bases in that

rotating frame. Using Appendix formula (A-15) and scalar component matrix
notation,

g H gG iC gG (13)

, rQG + -G x rQG (14)

Because the position vectors in (8) are fixed in the body fixed frame

G, r 0.
QG

The vectors IT and R may have been originally known and expressed in

terms of their components in an inertial frame I, however their components in

the 6 frame ire straightforwardly obtained by transforming the vector

romponents from the Inertlal framne I to the gimbal frame G as required, e.g.,

12*
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-- (15)
fT I TI

and

RQ- -C R (16)

We now employ (13) and (14) in (12) to obtain the matrix-scalar equation

expressed in the G frame.

TT H + W- x 1 + -(rx M R

TG G G dt QXMQRQ)
(17)

+ G (r x MQRQ) r QQRQG MQG

where

I EI gO Yg 0 ;g)G g .'G

because the frame g is parallel to the frame G. Equation (7) can be written

as

TTG iPG;+ G HPG TQ (8

where

IiPG ffG HQ (9

and

H r. xQR Q(20)

1'3



and

T(Q (xrQ) X "QRQ (21)

The quantity HPG is defined as Russell's (2 ) "primed" angular momentum,
which includes the momentum HG due to rotation about the center of mass plus a

term HQ resulting from the translational motion of the body center of mass due

to gimballing. The HQ term is referred to as the "swing" momentum.

The term TQ In (18) is a torque that is related to the acceleration

term (WG x rQG) x RQG and is referred to as the "swing" torque. The swing

torque and the time derivative of the swing momentum comprise the interbody

torque, i.e., the net torque acting on the ith body due to motion of the

ensemble of bodies.

Equations (18) and (19) are the equations describing the angular motion

of one of the gimballed bodies in a multi-body system. The solution to these

equations is depicted in block diagram form in Figure 2whereT T andH
are regarded as independent variable inputs in the figure and the computed

+ -I
components w G of w in the gimbal frame G are the output. The inverse 1 - of

the inertia matrix ! which is determined relative to the frame g is a physi-g
cAI parameter as are the mass M and the components of r in the gimbal frame.

Q +
4quations (18) and (19) further simplify to familiar forms if r - 0 or if

Q
R - 0 which makes the center of mass inertially fixed. The terms HQ #nd TQ

generally will not be zero in a multi-body system and the presence of RQ which

is related to the gimballed mass velocity contributes in some cases very sig-

nificantly to the angular momentum of the body and therefore is very important
4

to consider. Its effect is amplified by the vector rQ which is related to the

distance from the gimbal points to the center of mass of the body.

14
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4. FOUR BODY SYST9M DYNAMICS

The translational equations of motion given by (5) are written out, for

example, for the four body chain configuration shown in Figure 3,

M1R1  =F1  (22)

4~ +
MR -F -F (23)

M2R2 = F2 - F1 (23)

M3R3 = F3 - F2  (24)

°4. +
M4R = -F 3  (25)

4.1 INTERBODY TORQUES

The interbody torques resulting from interbody forces are now

determined. It is easily seen that equations (8) and (5) or equations (22-25)

yield for the ith body in the chain

r iX~ F r Q . r i MkR kr Ai' MkRki k-1

.~(i-i) *

=Q R r i X MR - ^ix Mk Rk
k-l

d t + (i-i) 1-

.t Ir t R t - Ir x F. Rk

k-i .1

* (26)

riMR - Pt X MkRk
ri k-l

17
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where

Pi  r - r (27)

Comparing (26) with corresponding terms in (17) and (18) it is apparent

that the first term in (26) is after scalarizing to the ith gimbal frame

HQ r, ,R - x Mk k Rk (28)

where as in (20) we have defined the quantity H as the swing momentum term

(r x M R ). In particular for the four body chain of Figure 3, using (28)
Q Q Q

we obtain,

HQ -rl 1 , 1 (29)

.% - ¥ . - =2 • o
fQ2 - 2 x 2R2 - 2 ' "II R,(0

* '3 -3 :
11 Q3=r 3 x H R - ' *R11 + R, 2C2 'R 2) (31)

or

HQ3 = r 3 × M33 - 3 x M4C4 R4 (32)

HQ4 - r4 x H44 33)

The second term in (26) is the swing torque

TQi" I R -Pi x Hkkj (34)
ke 1

191



which becomes after scalarizing to the it" gimbal frame,

=(w x - - - (i-l) ~

T xM - (wi p) x r MK k (35)
k-I

For the four-body system of Figure 3, the swing torques on each body are

found to be

T TQ = (W 1 x r1) x I1 R1  (36)

-2
TQ2 -- (i r2 M22 " r 2 ) x M1 C K 1 (37)

TQ3 = 3x r-3 ) x M3R3 - (t3 x 3) x (M1C •, R + • R2) (38)

or

=3:TQ- (iWi x r ) x KR 3 -W ((1 X M * R4  (39)

T = (W4 x r4) x M4R 4  (40)

We can now proceed with the determination of the Ri terms in (28) in

order to calculate the solution of equations (18) and (19) shown in Figure

2. In the material that follows, the subscripts denote the mass and gimbal

numbers. The subscript G has been suppressed and replaced merely with the

gimbal number i. The total torque TTi on body i will be found to be comprised

of the torque from the ith gimbal elements (torque motor, bearing friction,

etc.) plus the reaction torque from the (i-1)th gimbal elements.

4.2 MOMENTUM - KINEMATIC CONSTRAINTS

Figure 3 schematically shows several bodies connected together. A main

body is shown which could be the main part of a spacecraft which has a gimbal

system-that points a payload, e.g., the main body M3 could be the spacecraft,

M4 its solar array, M2 a gimbal, and M, the payload. The axes G1 and G2 would

20



then be the payload gimbal axes and G3 the solar array gimbal axis. In the

following analysis, the subscript number denotes the gimbal frame number and

the associated gimballed body number. Refer to the appendix for definitions

of vectors, scalars, matrix-scalar expressions and transformations.

It is obvious that the gimbal points move, i.e., the 101 change as the

gimballed bodies are articulated. We now proceed to find the t01*

The center of mass of the system is chosen as the origin of the

inertially fixed reference frame corresponding to the XI YI ZI frame in Figure

1. This restricts the analysis in this paper to the situation of no external

forces that would cause the system c.m. to undergo translational motion. Pure

moments about the system c.m. would be permissible. The definition of the

center of mass is employed; i.e.,

4
M KR o (41)

* i-I

If we differentiate (41) we get

4 9

SKiRi -0 (42)
i-I

which is a statement of the conservation of translational momentum of the

system. Referring to Figure 3, the following vector relations are found:

R1 2 R02 + r 2

R 4  R 04 + r4

21



In general, for the chain configuration

Rt - R t + r (43)

Also,

R02 R 01 + 2

R03 R 02 + 3

where

P2 vector from GI to C2 , etc.

so in general

+ + + (4R iR + p (44)

or

I
+ + +
R0i = R + 0k  (45)

k=2

Equations (43) and (44) are depicted in Figures 1 and 3. Differentiating

(43), we get for the ith body

R1 = Ri +W i x r (46)

An (W- x R i ) term is not present because R01 vector is not based in the ith

body moving/rotating coordinate frame but rather is based in the inertial

frame centered at the system c.m. On the other hand, the ri vector is based

and fixed in the ith body frame so that its time derivative is identically

zero dnd the (Wi x r i ) term arises from the wI angular rate of the ith

body. Similarly, differentiating (44) and (45) we get

22



R01 0 R(i-1) + i x Pi (47)

and

+ +
RO1 = R01 + 2 (W k x pk) (48)

k-2

Substituting (48) into (46) and the result into (42) we obtain

N N
MR0 1 + + x r ( P (49)

1=+ ik

which can also be expressed as

+ N1 (W x i) + k Mk)(wi x ,) = 0 (50)

i-l 12k-i

The vectors In (50) should be expressed in terms of their components in the

same coordinate frame. Thus, we scalarize (50)

+ N MHC *(w1  x j-)+

MR2k- 01+ MI WI " rW I
(51)

N( Mk)~ (~ ' 
1

where we have arbitrarily chosen the first body as the computational coordinate

frame and the transformation matrices C are employed to transform the vectors
+!' ri and p1 expressed in the j

t
h body coordinates, back to the first body

coordinates. As an example, for 4-bodies in series (51) is used to find I01.

23



-MR0 1 - H 1(W1 x r ) + M2 C 2  (w2 x r2 )

+H 3 0(u) 3 r3 + M4 E4 A4 x Y4

+ (M + M3 + M4)C: (w2 x P2)

+ (43 + .3 3 X 35

(The P 1 and P4 terms are noted to be zero.) After RO is computed, the

remaining R needed to complete the solution for the constraints are found

from (47). These T0t are needed in the solution of the equations for momentum

and motion which are computationally performed in each of the gimballed bodies

respective coordinate frames and so they are scalarized in the ith frame.

From (46), and (47) we obtain the scalarized result

(i-1) R0(i-1) + W1 x(i + Ti)  (53)

and from (46) and (48)

R~ +ii X r + ~(54)
k-2

Equation (53) is obviously simpler than (54) and so it is the preferred method

of calculating they (i.e., in succession).

24
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Figure 4 shows the block diagram representation for the solution of the

Ri terms in equation (19) for the ith body angular momentum term H Qi using

equations (51) and (53). It is noted in Figure 3 that the 4th and last body

is assumed to have the same reference gimbal point as the 3rd body so that

RO4 - R 03 The first and last bodies in the chain in Figure 3 have only a

single gimbal point and so their values for Pi are zero or undefined.

25
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5. ROTATIONAL MOTION RESTRAINT EQUATIONS

The solution of the equations of motion of a single body in the ensemble

of bodies as depicted in Figure 2 can be carried out as previously noted using

equations (18), (19), (28), (35), (51) and (53) yielding the body angular

rates. The incremental angular motions that can be obtained by integration of

the body angular rates, accounting for kinematics, are those angular motions

about the gimballed ith body Gi axes. Practically speaking, for gimbal motion

freedom, one axis is unrestrained in the sense that large relative angular

motion may occur (about the gimbal bearing axis) between the gimballed body

and the neighboring body to which it is attached. The other two body axis

motions relative to the attached body are restrained by the bearings to be

small or near zero. One approach in writing simulation equations is to assume

these transverse gimbal axes motions to be zero. This requires that "hard"

constraint relations be solved algebraically in each integration step of the

simulation. The analytical determination of the hard constraint relations is

avoided in the approach taken here. Instead, the constraints for the bearing

transverse axes are implemented by feeding back reaction torques about these

axes that are proportional to small relative transverse axes angular

motions. In effect then, the constraint relations appear as restraint g.mhal

stiffnesses. In fact, the stiffnesses used in the simulation can be t-.

actual bearing transverse axes stiffnesses or perhaps the stiffnessv

associated with the lowest frequency modes of vibration about these axes.

One can take the point of view that the so-called unrestrained axis or

the bearing "free" axis is also restrained by the reaction and control torques

relations for that axis. These torques include, for example, motor

electromagnetic torque, motor cogging torque, motor magnetic hysteresis

torque, bearing and motor solid friction torque, and viscous friction torque.

With these notions then, the transverse axes motions that would be

oscillatory with stiffness feedback only, can also be dampened using realistic

structural damping relations. If the simulation is expected to give good

fidelity response data at the usually higher structural frequencies, the

27



damping introduced should be realistic. If the sl..vulation is not expected to

provide high fidelity results except at frequencies well below the structural

frequencies, it is anticipated that high damping can be artificially intro-

duced for the bearing transverse axis modes. This will allow the use of

larger integration step sizes in a digital simulation and consequently will be

more economical in computer run time. The restrained body dynamics equations

are shown for the ith body in block diagram form in Figure 5.

It
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6. FOUR BODY SERVO SYSTEM EXAMPLE

6.1 GTMBALS/COORDINATES

An example of a multi-body gimbal servo system is illustrated in Figure

6. A block diagram of the "complete" dynamics equations for this example is

shown in Figure 7.

The first body is the pointed experiment payload of mass H1 which has a

gimbal coordinate frame XI, YI, Z1 fixed in the payload with Z, along the

line-of-sight of the experiment, X1 is the cross-track gimbal axis, and Y1

completes the triad. The center of mass of M1 is offset from the G, gimbal

center an amount rI.

The second body with mass M2 is the gimbal yoke. The yoke gimbal center

point G2 is assumed to be midway between the cantilevered yoke bearings that

provide free rotation of the yoke about the Y2 axis. The yoke X2 axis moves

with the yoke and is parallel to the experiment X, gimbal axis. The Z2 axis

completes the yoke orthogonal frame. The center of mass of the yoke is offset

from the G2 gimbal point an amount r2.

The third body is the spacecraft and its gimbal frame G3 is arbitrarily

assigned to the same point as the solar array frame, G4, i.e., it could also

have been assigned to the same point as the yoke frame point G2. As shown in

igures 4 and 6, the G3 and G4 points coincide. The spacecraft Y3 axis is

parallel to the yoke Y2 axis and coincides with the solar array Y4 axis. The

spacecraft X3 axis is fixed in the spacecraft parallel to one of its edges and

also nominally parallel ti, the spacecraft orbital velocity vector. The Z3

axis poInt.3 in the direction of orbit nadir and completes the right handed

triad.

The solar array X4 axis is parallel to an edge of the array which is

maintained normal to the sun line. The Z4 axis completes the array frame G4

triad.
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6.2 CONSTRAINTS AND RESTRAINTS

The constraint relations in Figure 4 apply to this example and in effect

maintain the gimbal points geometry so that the distances between gimbals are

maintained constant (e.g., +2 = vector from g, to 92 - constant).

The "restraint" provisions that keep the angular rotation about the

gimbal transverse axis small are the realistic stiffnesses about the

experiment Y, and Z1 axes, the yoke X2 and Z2 axes, and the solar array X4 and

Z4 axeS. The stiffnesses enter into the equations of restrained motion; for

example, as indicated in Figure 5 for the ith body, and Figure 8 for the

complete system, in the blocks labeled f which are 3 x 3 stiffness

matrices. The diagonal elements are the stiffnesses about the X2, Y2, Z2

axes. The off-diagonal elements are assumed to be negligible. Since the yoke

Y2 axis is unrestrained except for solid friction, its stiffness is zero or

small compared to the X2 and Z2 stiffness elements in K2. Data for the

stiffness elements can be obtained from design data or test data.

The other restraint provisions are applied somewhat realistically such

as viscous friction in all axes in the iB2, 3 x 3, matrix in Figure 5. The

diagonal elements are the viscous friction coefficients operating on the X2,

Y2, Z2 relative angular velocities. The off-diagonal terms are assumed negli-

gible. The controlled Y2 axis viscous friction coefficient can be found from

test data. The X2 and Z2 axis friction coefficients can be assigned values

that make the roots of the characteristic equation of the ! 2 lK2/S
2 +

Y2 1B2 /S loops taken together for the X2 and Z2 channels overdamped such that

the low frequency root is not much higher than the Y2 control bandwidth (say

for the rate control mode). If the undamped roots of the aforementioned

characteristic equation lie within the control bandwidth, then an attempt

should be made to use as realistic a friction model as possible for the trans-

verse axes. Some viscous friction may be present for transverse axis motion

of the gimbal axis relative to the adjacent spacecraft body through the action

of lubrication as the viscous addla. Perhaps a better choice of a model for

incorporating damping is to use a simplified solid friction model(9 ) that

rasults in realistic solid friction hysteretic damping. The model is an

integral function of the relative angular rate Aw2 given by
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TFj =f 1- T sgn Aw2 J)dt (55)
TCJ

where TFJ is the j axis component of solid friction torque that retards the

motion, a is the solid friction model rest slope, and TCj is the coulomb

friction torque level. Even though it is hysteretic, the model behaves like

viscous friction for medium amplitudes of angular oscillatory motion but the

behavior transitions to non-linear "structural damping" for very low ampli-

tudes of oscillation. Structural damping virtually disappears near zero

amplitude motion.

6.3 CONTROLLED AXES

The controlled gimbal axes are the experiment X, axis, the yoke Y2 axis,

and the solar array Y4 axis.

6.4 SENSORS

Rebalance rate gyros (in El and Z2 of Figure 7) are mounted with input

axes along the X, and Y2 axes and sense the inertial angular rates of the

experiment and yoke about these axes. Angle pickoffs (in P1 and P2 of Figure

7) are also mounted on these axes and measure the relative Euler angles

I e 2 A sun sensor (in P4) is mounted on the solar array and measures the
2 3"4

angle between the sun vector and the Y4 Z4 plane. An earth-sensor (in P3)

looks at the earth in the Z3 direction and measures spacecraft pitch (about

Y 3) and roll (about X3 ) attitude errors. The spacecraft attitude control

system also has rebalance rate gyros (in 63) and a star sensor mounted on the

spacecraft body (not shown in Figure 7).

6.5 ACTUATORS

The controlled gimbal axes are driven relative to the adjacent body by

reacting against the adjacent body with D.C. torque motors. The spacecraft

.primary attitude control mode during experiment gimballing utilizes reaction

wheels. The gimbal torque motor actuators are elements in the I and 42

blocks in Figure 7. The torque motor elements of can be considered to be
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Laplace transform transfer functions to account for dynamical effects of the

torque motors if necessary. The spacecraft reaction wheels (not their

housings) are actually additional bodies in the multi-body system and should

be modelled like the other bodies. However, a simplification is justified if

the reaction wheel momentum is small enough that it does not cause significant

gyroscopic effects on the system. In this case, the reaction wheels can be

considered to be devices which apply torque to the spacecraft through the

dynamics of the wheel motor drive without the need to consider the effects of

wheel speed on the system momentum. The wheels as torque generating devices

are depicted in block &3 of Figure 7. The elements of the &3 matrix may be

dynamics transfer functions.

6.6 COMPENSATION

The blocks labelled e contain position control loop compensationP

transfer functions and the blocks labelled eR contain the rate control loop

compensation transfer functions. In the case of the experiment, the

t and 0 pointing position commands as well as the Ax and w rate commands

are generated external to the control loops. Switchover from position to rate

control is done to provide better tracking performance because of lower noise

and higher loop bandwidth using the rate loop only. The usual proportional

plus integral or proportional plus rate compensation is employed in the

various compensators. The simplified diagram in Figure 7, for example, shows

the solar array control without gyros or tachometer feedback and so

proportional plus rate type compensation is used for this control loop.
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7. SUMMARY

The equations of motion of a multi-body gimbal servo system for

simulation purposes were derived using a simplistic gimballed body momentum

formulation that was maintained throughout, thereby retaining the original

variables defined in the beginning of the model formulation. The avoidance of

unnecessary algebraic manipulation and the introduction of new variables

through transformation of the original variables is seen as a simplification

in evolving and understanding a complex computer simulation model that can be

debugged and run with enhanced insight to the physical process being

simulated.

One of the features that helped in this goal was the choice of writing

the equations of rotational motion in the body fixed coordinates of the

gimballed bodies. The result il the simple body rotational dynamics equation
+ 4

diagram of Figure 2. The rQx MRQ moment of momentum term that is added to the

body rotational angular momentum is determined algebraically by evaluating the

gimbal interbody forces and utilizing conservation of translational momentum

in order to avoid solution of the translational dynamics. Although somewhat

involved, this process seems to evolve to solutions that are straightforward

as indicated by Figure 4.

The equations of rotational motion are expressed in the gimballed body

coordinates and thereby require fairly extensive transformation of angular

rates and torques from adjacent bodies, but this is true of other formulation

approaches. When a generalized coordinate approach to formulation is taken,

the coordinate transformations are hidden or essentially replaced by velocity

and momentum transformations. Thus, in this regard, there appears to be no

great disadvantage in the approach taken in this paper. However, there seems

to be an advantage in keeping the avenues of insight open by retaining the

original coordinate transformations throughout.

The equations necessary for the simulation of a 4-body system were

* presented in matrix-scalar block diagram form in Figures 4 and 7. The

elements of the 3 x 3 matrices or dyadics need to be defined whereby it will
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be found that many are zero and many are Laplace transform transfer

functions. The component scalar equations are too detailed to devote

additional attentton in this report.
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APPENDIX A

1. SCALARIZING

The vector equations in this paper are used in vector-dyadic form until

the need arises to scalarize into matrix-scalar forms. For computer time

history simulations, we need the matrix-scalar form as an end product to work

from and the block diagrams used herein are in that form. In scalarizing, the4

assumption is made that a vector R can be written in terms of its components

along some bases UAx, uAy, uAz. In vector form,

+ - - ^ A + R A z A( -
R A RAuA = RAxuAx + RAyuAy AzAz (A-1)

Then alternatively in matrix-vector form

+ }A A Ax Ay" Az jAx Ay u Az (A-2

- [R A I uA}  (A- 3)

RAx{uA)

RAy UA (A-4)

RAz uAz

or in terms of its scalar components in frame A the matrix-scalar form is

IR Ax

R AzJ
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The idea of a matrix such as the component matrix [RAI operating on e vector

Iaal producing a "transformed" vector IRA] is applied to coordinate

transformations where a rotation matrix [CAI operating on a vector

say SA produces a vector S In "matrix vector" form,

Is [CB ] {SA  (A-6)

or

Iy Bf CA] jyA (A-7)
S Bz UBz S ,Az UAz

and in matrix-scalar form

(S 5 J [CB] (SA] (A-8)

or

B %A S (A-9)

or

RX [ Ax
Isty [C B SAI (A-10)

IS IS Az
L J L Azj

The vector dyadic form

= B (A-1l)
B A A
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is represented in matrix scalar form as

* - _ B §A (A-12)
B A A

where the dyadic and matrix CA are equivalent.

The vector R in (A-i) and (A-3) did not have to be identified with

respect to a coordinate frame until its components needed to be known, at

which time its bases have to be specified. In the case of thewhic tie is bsesuAX, UAy, uAZ
+

coordinate transformation, (A-6), the bases of S were presumably known to be

in frame A before the transformation matrix or dyadic A could beA culdbegenerated to

produce that vector's components in the B frame. In this sense, the "matrix

vector" form is already in a scalarized form by identifying the A and B frame

bases vectors.

2. DERIVATIVES

If a vector derivative operation is required in a fixed inertial frame

with bases UAx , UAy , uAz, the components of R are identified from

+ .$% * A * A * A

Rf R U + R u + (A-13)AuA 'AxYAx AyAy AzUAz

wherein the scalar components are seen to be

RA R Ay (A-14)

LAZJ

If the components of a vector derivative of R are known in a frame B

rotating at an inertial angular rate w with respect to an inertial frame A,

* the components of the vector derivative in the inertial frame can be found

* from the vector formula

RA R + W x RB (A-15)
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They are the corresponding quantities of the matrix scalar equation,

RA = RB +wB x RB (A-16)

where the symbols wx denotes a 3 x 3 skew-symmetric matrix operator that

operates on the 1 x 3 column matrix RB i.e.,

SB x = Bz 0 -W x (A-17)

-to) (a) 0 I

Sometimes the components of a vector derivative R (or any vector for that

matter) are known in an inertial frame A and it is desired to determine its

components in another frame B which may be rotating or not. Here, the
4

components of R in the frame B are [see (A-12)]

-B
R Rc . A i? (A-18)

It perhaps should be pointed out that I in (A-15) is the inertial angular

velocity of the B frame whose components, if need be, can be transformed via

formula (A-12)

-c
R A * A ( 9

All of the vectors on the right gide of (12) are thereby scalarized in (17) to

the same reference frame. Note that if there is more than one subscript to a

scalar 1 x 3 matrix, the last subscript denotes the reference frame,
w4

e.g., w23 indicates the scalar components of w2 are in frame 3.
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3. TRANSFORMATIONS

The transformation matrix or dyadic can be a single or multiple

* axis Euler angle transformation. Here, for single Euler angle rotation

transformations,

1 0

0 [ c , (A-20)
-s

which is a t rotation about XA axis in the sequence to get to B frame,

Ce 0 -so

fe = 1 1 0 , (A-21)

~so n Ce]

is a 0 rotation about YA axis in the sequence to get to B frame, and

[ c s* 0]
[V'] = -Sq' Ct 0 (A-22)

0 0 1

is a i rotation about ZA axis in the sequence to get to the B frame, where XA,

YA' ZA are the axes of the GA frame. If a gimbal axis set, through which

gimbal Euler angles occur, has zero or negligible mass and inertia, and are

intersecting, then the transformation (19) can be taken as the product of

successive rotational transformations of the massless gimbal set. For

example, if the massless gimbal set order of rotation is, first about XA,
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second about YA, and third about ZA, then to get from the GA frame to the

gimbal frame,

A A A A (A-23)

In the usual case where a gimbal has appreciable or finite mass, and a single

bearing axis is employed which may be non-intersecting with other gimbals,

then that gimbal should be considered as a separate body and a single angle

rotation (about the gimbal axis) transformation is deemed adequate. However,

strictly speaking, the small angle rotations about the axes transverse to the

bearing axis which can be considered co-centered should be included in the

general 3-axis case as in Equation (A-23).

4. ATTITUDE KINEMATICS

The gimbal or body angles or parameters that characterize the attitude

of the body are computationally obtained from kinematics rate equations. In

the case of Euler angles that are used in this paper they are obtained by

integration of kinematic rate equations typically of the form

ses SOO, W

I Ct SY (A-24)

Lit COI10 s0 (i

Where the order of Euler angle rotation here is yaw-pitch-roll (i.e., 1 st

about Z, 2n d about Y, 3 rd about X). The coefficient matrix is non-orthogonal

for Euler angle transformations and possesses singularities. The singularity

condition is avoided for small angle rotations transverse to the gimbal axis

if the first rotation in the sequence is taken to be the gimbal bearing

axis. Also, the coefficient matrix is then independent of the bearing axis

Euler angle. Thus, if small angle approximations for pitch, e, and
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roll, 1, are used, which represents the small angular deflections transverse

* to the bearing Z axis, we get for the above example,

I o O]- (A-25)

where, again, it is seen that the coefficient matrix does not contain the

bearing axis rotation angle, *.

it may easily be ascertained that the small angle approximation for the

coefficient matrix is not unique and independent of the order of the last two

rotations, i.e., pitch-roll vs. roll-pitch. This observation and the

" assumption that the transverse axis rotations will be truly small and

oscillatory, are motivations for setting the small angles in the coefficient

matrix to zero. The coefficient matrix is then seen to be the identity

matrix.

The spacecraft attitude errors are obtained in a similar fashion,

however the attitude errors are referenced to the local orbit frame. Thus,

the attitude kinematic rate equations are of the form of equation (A-24)

except the rate error vector on the right side of equation (A-24) is

3 ri 0 . (A-26)

which is reflected in Figure 7 as the spacecraft attitude error rate.
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